R25...Compound Measures - Pressure

OCR

Edexcel

R25

 $p = \frac{F}{A}$

p = pressure

F =force

A = area

The block is a cuboid, 12 cm by 12 cm by 65 cm. The block exerts a force of 220 newtons on the ground.

Calculate the pressure that the block exerts on the ground.

Give your answer in newtons/cm²

.....newtons / cm²

(Total for Question 25 is 2 marks)

R25

The block is a cuboid, 12 cm by 12 cm by 65 cm. The block exerts a force of 220 newtons on the ground.

Calculate the pressure that the block exerts on the ground.

Give your answer in newtons/cm²

$$p = \frac{F}{A}$$

$$p = \text{pressure}$$

$$F = force$$

$$A = area$$

0.282

newtons / cm²

(Total for Question ... is 2 marks)

Video created by W Neill

R75_{The force is increased by 10 newtons.}
The area is increased by 10 cm²

Helen says,

"The pressure decreases by less than 20%"

Is Helen correct?

You must show how you get your answer.

(Total for Question 25 is 3 marks)

A force of 70 newtons acts on an area of 20 cm²

 $pressure = \frac{force}{area}$

Video created by W Neill

is 3 marks)

R75_{The force is increased by 10 newtons.}

The area is increased by $10\,\mathrm{cm}^2$

Helen says,

"The pressure decreases by less than 20%"

Is Helen correct?

You must show how you get your answer.

 $\frac{10w}{76}$ Pressure = $\frac{76}{20}$ $= \frac{3.5}{1/cm^2}$

Then 80Pressure = 30 $= 2.6 \text{ n/cm}^2$ $\frac{30}{3.5} = 23.8$

(Total for Question

AQA

R25

$$pressure = \frac{force}{area}$$

Work out the force when the pressure is 24 $\mbox{N/m}^2$ and the area is 3 \mbox{m}^2 Circle your answer.

[1 mark]

0.125 N

8 N

27 N

72 N

R25

pressure =
$$\frac{\text{force}}{\text{area}}$$

 $24 = \frac{?}{3}$

Work out the force when the pressure is 24 N/m 2 and the area is 3 m 2 Circle your answer.

[1 mark]

0.125 N

8 N

27 N

72 N

Video created by W Neill

N57 R25

6.4 m

Not drawn accurately

A force of 345 Newtons is applied to the floor.

The force is to the nearest 5 Newtons.

$$pressure = \frac{force}{area}$$

Work out the upper bound of the pressure.

Give your answer to 4 significant figures.

You must show your working.

[5 marks]

Answer

N/m²

The dimensions of a rectangular floor are to the nearest 0.1 metres.

Video created by W Neill

N57 R25 2.65 2.6 m

Not drawn accurately force = 34SN

Area = Smillest = 2-SS x 6.35

A force of 345 Newtons is applied to the floor.

6.4 m

The force is to the nearest 5 Newtons.

greatest force Big pressure Area Small

Pressure = 347.5 16.1925

Work out the upper bound of the pressure.

Give your answer to 4 significant figures.

You must show your working.

[5 marks]

R25

pressure =
$$\frac{\text{force}}{\text{area}}$$

A force of 40 Newtons is applied to an area of 3.2 square metres.

Work out the pressure.

Give the units of your answer.

[2 marks]

Answer ____

R25

pressure =
$$\frac{\text{force}}{\text{area}}$$

A force of 40 Newtons is applied to an area of 3.2 square metres.

Work out the pressure.

Give the units of your answer.

ressure = 3.2

[2 marks]

Answer

12.5 n/m2